quantifier algebra - définition. Qu'est-ce que quantifier algebra
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est quantifier algebra - définition

Lindstrom quantifier; Lindstroem quantifier

Quantifier (logic)         
  • [[Augustus De Morgan]] (1806-1871) was the first to use "quantifier" in the modern sense.
  • url=https://www.researchgate.net/publication/366867569}}
</ref>
  • Syntax tree of the formula <math> \forall x (\exists y  B(x,y)) \vee C(y,x) </math>, illustrating scope and variable capture. Bound and free variable occurrences are colored in red and green, respectively.
LOGICAL OPERATOR SPECIFYING HOW MANY ENTITIES IN THE DOMAIN OF DISCOURSE THAT SATISFY AN OPEN FORMULA
Logical quantifier; Quantificational fallacy; Solution quantifier; Quantification (logic); Quantifiers (logic); Set quantifier; Range of quantification
In logic, a quantifier is an operator that specifies how many individuals in the domain of discourse satisfy an open formula. For instance, the universal quantifier \forall in the first order formula \forall x P(x) expresses that everything in the domain satisfies the property denoted by P.
Filter quantifier         
In mathematics, a filter on a set X informally gives a notion of which subsets A \subseteq X are "large". Filter quantifiers are a type of logical quantifier which, informally, say whether or not a statement is true for "most" elements of X.
*-algebra         
ALGEBRA EQUIPPED WITH AN INVOLUTION OVER A *-RING
Star algebra; *-homomorphism; * algebra; Involution algebra; Involutive algebra; *-ring; Star-algebra; * ring; Involutory ring; Involutary ring; Star ring; *algebra; Involutive ring
In mathematics, and more specifically in abstract algebra, a *-algebra (or involutive algebra) is a mathematical structure consisting of two involutive rings and , where is commutative and has the structure of an associative algebra over . Involutive algebras generalize the idea of a number system equipped with conjugation, for example the complex numbers and complex conjugation, matrices over the complex numbers and conjugate transpose, and linear operators over a Hilbert space and Hermitian adjoints.

Wikipédia

Lindström quantifier

In mathematical logic, a Lindström quantifier is a generalized polyadic quantifier. Lindström quantifiers generalize first-order quantifiers, such as the existential quantifier, the universal quantifier, and the counting quantifiers. They were introduced by Per Lindström in 1966. They were later studied for their applications in logic in computer science and database query languages.